Train
Training module for fine-tuning SentenceTransformer models on anime/manga synopsis data.
This module provides functionality for training sentence transformer models to understand semantic similarities between anime/manga synopses. It handles the complete training pipeline, including:
-
Data Processing:
- Loading anime/manga datasets
- Managing genres and themes
- Generating embeddings for categories
-
Pair Generation:
- Positive pairs: Same-entry synopses with high similarity
- Partial positive pairs: Different-entry synopses with moderate similarity
- Negative pairs: Different-entry synopses with low similarity
-
Model Training:
- Fine-tuning pre-trained sentence transformers
- Custom loss function support (cosine, cosent, angle)
- Validation and evaluation during training
- Checkpoint saving and model persistence
-
Resource Management:
- GPU memory management with garbage collection
- Multiprocessing for pair generation
- Efficient data loading with DataLoader
Usage:
For full list of arguments, use: python train.py --help
Notes
- Supports resuming training from saved pair files
- Uses cosine similarity for evaluation
- Handles both anime and manga datasets with specific genre/theme sets
- Custom transformer option available for modified architectures
create_pairs
¶
create_pairs(df: DataFrame, max_negative_per_row: int, max_partial_positive_per_row: int, category_to_embedding: Dict[str, NDArray[float64]], partial_threshold: float = 0.5, positive_pairs_file: Optional[str] = None, partial_positive_pairs_file: Optional[str] = None, negative_pairs_file: Optional[str] = None, use_saved_pairs: bool = False, num_workers: int = cpu_count() // 4) -> Tuple[List[InputExample], List[InputExample], List[InputExample]]
Create positive, partial positive, and negative pairs from the dataframe.
This function handles the generation of three types of synopsis pairs:
-
Positive pairs: From same entries with high similarity
-
Partial positive pairs: From different entries with moderate similarity
-
Negative pairs: From different entries with low similarity
PARAMETER | DESCRIPTION |
---|---|
df
|
DataFrame containing anime/manga data with synopses
TYPE:
|
max_negative_per_row
|
Maximum negative pairs to generate per entry
TYPE:
|
max_partial_positive_per_row
|
Maximum partial positive pairs per entry
TYPE:
|
category_to_embedding
|
Dictionary mapping categories to their vector embeddings
TYPE:
|
partial_threshold
|
Similarity threshold for partial positive pairs (default: 0.5)
TYPE:
|
positive_pairs_file
|
Optional path to save/load positive pairs
TYPE:
|
partial_positive_pairs_file
|
Optional path to save/load partial positive pairs
TYPE:
|
negative_pairs_file
|
Optional path to save/load negative pairs
TYPE:
|
use_saved_pairs
|
Whether to load existing pairs if available
TYPE:
|
num_workers
|
Number of parallel workers for pair generation
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[InputExample]
|
Tuple containing: |
List[InputExample]
|
|
List[InputExample]
|
|
Tuple[List[InputExample], List[InputExample], List[InputExample]]
|
|
Notes
- Uses sentence-t5-xl model for encoding during pair generation
- Performs garbage collection after each pair type generation
- Saves generated pairs to files if paths are provided
Source code in src/train.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
|
get_pairs
¶
get_pairs(df: DataFrame, use_saved_pairs: bool, saved_pairs_directory: str, max_negative_per_row: int, max_partial_positive_per_row: int, num_workers: int, data_type: str, category_to_embedding: Dict[str, NDArray[float64]]) -> List[InputExample]
Retrieve or generate all training pairs for model training.
This function handles loading existing pairs from files or generating new ones as needed. It manages three types of pairs: positive, partial positive, and negative pairs.
PARAMETER | DESCRIPTION |
---|---|
df
|
DataFrame containing the anime/manga data
TYPE:
|
use_saved_pairs
|
Whether to attempt loading existing pairs
TYPE:
|
saved_pairs_directory
|
Base directory for saved pair files
TYPE:
|
max_negative_per_row
|
Maximum negative pairs per entry
TYPE:
|
max_partial_positive_per_row
|
Maximum partial positive pairs per entry
TYPE:
|
num_workers
|
Number of parallel workers for generation
TYPE:
|
data_type
|
Type of data ('anime' or 'manga')
TYPE:
|
category_to_embedding
|
Dictionary mapping categories to embeddings
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[InputExample]
|
List[InputExample]: Combined list of all pair types for training |
Notes
- Automatically creates directory structure for pair files
- Falls back to generation if loading fails or files missing
- Combines all pair types into a single training set
- Maintains consistent file naming based on data_type
Source code in src/train.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
|
main
¶
Main training function for fine-tuning SentenceTransformer models.
This function: 1. Parses command line arguments for training configuration 2. Sets up model paths and data loading 3. Generates or loads training pairs 4. Initializes and configures the model 5. Sets up training parameters and loss functions 6. Executes the training loop with early stopping 7. Saves the final model
Command line arguments control all aspects of training including: - Model selection and architecture - Training hyperparameters - Data processing settings - Resource allocation - Input/output paths
The function handles the complete training pipeline from data preparation through model saving, with appropriate logging and error handling.
Source code in src/train.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
|
set_seed
¶
Set the random seed for reproducibility.