Sbert
Generate Sentence-BERT (SBERT) embeddings for anime or manga datasets.
This script loads a pre-trained SBERT model and generates embeddings for text data from anime or manga datasets. It handles batched processing, supports multiple synopsis/description columns, and saves the generated embeddings to disk.
Key Features
- Configurable model selection via command line arguments
- Automatic device selection (CPU/CUDA) with optimized batch sizes
- Preprocessing of text data before embedding generation
- Batched processing for memory efficiency
- Comprehensive evaluation data recording
- Support for both pre-trained and fine-tuned models
The embeddings are saved in separate directories based on the dataset type and model used. Performance metrics and model information are also recorded for evaluation purposes.
get_sbert_embeddings
¶
get_sbert_embeddings(dataframe: DataFrame, sbert_model: SentenceTransformer, batch_size: int, column_name: str, model_name: str, device: str) -> ndarray
Generate SBERT embeddings for text data using batched processing.
Processes text data in batches to generate embeddings efficiently while managing memory usage. Supports mixed precision for specific models on CUDA devices.
PARAMETER | DESCRIPTION |
---|---|
dataframe
|
DataFrame containing the text data
TYPE:
|
sbert_model
|
Initialized SBERT model instance
TYPE:
|
batch_size
|
Number of texts to process per batch
TYPE:
|
column_name
|
Name of column containing text data
TYPE:
|
model_name
|
Name/identifier of the SBERT model
TYPE:
|
device
|
Computation device ('cpu' or 'cuda')
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
numpy.ndarray: Matrix of embeddings where each row corresponds to a text input |
Source code in src/sbert.py
main
¶
Execute the SBERT embedding generation pipeline.
Workflow:
-
Parse command line arguments and determine device
-
Load and preprocess dataset based on type (anime/manga)
-
Initialize SBERT model with appropriate configuration
-
Generate embeddings for each text column in batches
-
Save embeddings and evaluation data to disk
The function handles device selection, batch size optimization, and memory management based on the model and available hardware.
Source code in src/sbert.py
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
|
parse_args
¶
Parse command-line arguments for SBERT embedding generation.
RETURNS | DESCRIPTION |
---|---|
Namespace
|
argparse.Namespace: Parsed arguments containing: model (str): Name or path of SBERT model to use type (str): Dataset type ('anime' or 'manga') |